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ABSTRACT 

Distance-regular graphs of diameter three are of three (almost distinct) kinds: 
primitive, bipartite, and antipodal. An antipodal graph of diameter three is just an 
r-fold covering of a complete graph Kk+i for some T G k. Its intersection array and 
spectrum are determined by the parameters r, k together with the number c of 2arcs 
joining any two vertices at distance two. Most such graphs have girth three. In this 
note we consider antipodal distance-regular graphs of diameter three and girth 2 4. If 
r = 2, then the only graphs are “Kk+i, k+l minus a l-factor.” We therefore assume 
r 2 3. The graphs with c = 1 necessarily have r = k and were classified in [3]. We 
prove the inequality r -2 > c ‘I2 ( Theorem 2), list the feasible parameter sets when 
c = 2 or 3 (Corollary l), and conclude that every 3-fold or 4fold antipodal covering of 
a complete graph has girth three (Corollary 2). 

There are three (almost distinct) kinds of distance-regular graphs with 
diameter three: primitive, bipartite, and antipodal (see, for example, [l]). 
These classes are disjoint but for the fact that the graphs “Kk+i, k+l minus a 
I-factor” are both bipartite and antipodal. 

The antipodal graphs have an apparently simple structure-being espe- 
cially regular “coverings” of complete graphs [1,3]. Thus, for example, the 
vertices of the icosahedron come in six diametrically opposite pairs, tith each 
vertex in each pair adjacent to precisely one vertex in each of the other five 
pairs: the icosahedron is thus a 2-fold antipodal covering of K,. The intersec- 
tion array, and hence the spectrum, of such a graph is determined by three 
parameters: the degree k, the index r ( 2 2) of the covering, and the number c 
of e-arcs joining any two vertices at distance two. An antipodal distance-regu- 
lar graph with parameters k, r, c has intersection array {k, (T - l)c, 1; 1, c, k}, 
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and the minimum polynomial of its adjacency matrix A is just the characteris- 
tic polynomial of the matrix 

B= 

I : 0 

0 
k-1-;r-1)i: 0 

(r -1)c 
0 c 1 0 0 0 

k-c-l k 

namely, (X - k)(x + 1)[x2 + (rc + 1 - k)x - k]. The eigenvalues X= 
k, - 1, xi, x2 of B, and their multiplicities as eigenvalues of A [m(k) = 
l,m(-l)=k,m(xi)=(r-l)(k+l)k/(k+xy) (i=1,2)], can all be calcu- 
lated in terms of the parameters k, r, c. Such a graph is called an “r-fold 
antipodal covering of Kk+ i” and is said to be “of type (T.K~+~)~.” 

For all their apparent simplicity, we have no satisfactory general methods 
for deciding of a given triple k, r, c whether there exist any graphs of type 
(r. Kk+l)c or, if such graphs exist, how many nonisomorphic ones there are. 
The so-called “feasibility” conditions (see, for example, [l, Fl-F6]) are 
surprisingly good at excluding more complicated intersection arrays (see, for 
example, [2]). But for the relatively simple class of antipodal graphs of 
diameter three, there are masses of “feasible” parameter sets whose exact 
status is unresolved. 

In this note we are concerned with antipodal graphs of diameter three and 
girth 2 4. Such graphs satisfy (r - 1)c = k - 1, and so are of “sporadic type” 
[l]. These graphs arise naturally in the classification of l-homogeneous graphs 
[4]. We prove the following results. 

THEOREM 1. Let G be a graph of type (r. Kk+l)c having girth 2 4. Then, 
with respect to the parameters b = r - 1 and c, the intersection array of G 
becomes {bc + 1, bc, 1; 1, c, bc + 1) and one of the following holds: 

(i) r = 2 and G is the unique graph of type (2. Kk+l)k_-l for some k 
(namely the graph “Kk+ 1 k+ 1 minus a l-factor “); 

(ii) r > 3, c = 1, and either (a) r = 6 and G is the unique graph of type 

(6. K,),; or (b) r = 56 and G is a (possibly nonexistent) graph of type 

(56.K,,),; 
(iii) r 2 3, c 2 2, c2 + 4( bc + 1) = d2 is a perfect square, and b( bc +2) 

(c+d)/2dEZ. 

THEOREM 2. Let G be a graph of type (r. Kktl),_ having girth 2 4. Then 
either (a) r = 2 and G = “Kk+l, k+l minus a l-factor,” or (b) r -2 > c1j2. 
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COROLLARY 1. 

(0 A graph d@me (r.hflh with r b 3 and having girth > 4 is feasible 
ifandonlyifr=2n2,k+1=4n2forsomen~2. 

(ii) A graph of type (r. Kkfl 3 ) with r > 3 and having girth > 4 is feasible 
if and only if either r = 14, k + 1 = 41, or r = 351, k + 1 = 1055. 

By Theorem 2 a graph of type (r. Kk+l)c with r Z= 3, c a 4 and having 
girth 3 4 is feasible only if T 2 5. Hence we obtain 

COROLLARY 2. Every 3-fold or 4fold antipodal covering of a complete 
graph has girth three. 

Proof of Theorem 1. Let G be a distance-regular graph of type (r. Kk+l)c 
with vertex set V, and suppose that G has girth > 4. For each vertex u in V, 
let Gi( u) denote the set of vertices at distance i from u. Thus r - 1 = ] G,( u) 1. 

Suppose r = 2, and let G3( u) = {u’} for each vertex u in V. Then G is 
bipartite and is isomorphic to “Z$+i, k+l minus the l-factor {{u, u’} : u E 
V}“-the unique graph of type (2. K,+,),_,. Thus we may assume that 
r 2 3. 

Counting the number of edges between G,(U) and G2( u) in two different 
ways, we get k( k - 1) = (r - 1)kc. Th us in terms of the parameter b = r - 1 
( 2 2), we see that k = bc + 1, that G has intersection array { bc + 1, bc, 1; 
1, c, bc + 1 }, and that its adjacency matrix has minimum polynomial [x - (bc 
+l)][x+l][x2+ cx-(bc-tl)] and eigenvalues bc+l, -1, xi, x2, where 

Xi, x2 = [ - c k \/~]+1)2. 
Suppose c=l. Then r=b+l=k23 and G is of type (k.Kk+l)l. But 

then, by [3], either k = r = 6 and G is the unique graph of type (6. K,),, or 
k = r = 56 and G is a (possibly nonexistent) graph of type (56. K5,)1. Thus we 
may assume that c > 2. 

It remains to interpret the condition that m( x i) = b( bc + 2)( bc + l)/( bc 
+ 1-t rf ) E Z, which is clearly necessary for the existence of a graph of type 
((b + 1). K t,c+2)c hating girth > 4. This integrality condition implies first that 

“~=[-c’vrc2+4o]a/4 must be rational, and hence that c2 +4( bc 
+ 1) = d2 for some positive integer d. If we label xi, x2 so that xi < 0 < r2, 
then the condition m(x,)~Z (i=1,2) reduces to m(r,)=b(bc+2)(c+ 
d )/2d E Z. [For later use, note that d is even if and only if c is even, and that 
(d, d + c) = (d, c) = (d’, c’)l/’ = (4(bc + l), c’)i/’ ~(4, c’)i/’ = 2 or 1 
according as d is even or odd.] n 

Proof of Theorem 2. If b = r - 1 = 1, the assertion follows from Theorem 
l(i). We therefore assume that b = r - la 2, and use the Krein condition [l, 
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F6] to show that c1j2 < b - 1. If [l, ui(x), Do, v,(x)lt is the right eigenvec- 
torofBwitheigenvaluex,thenZ?1(Ti)=Xi,Z)2(Xi)=[XB-(bc+1)]/~= -xi, 
and us( x, ) = - 1. The Krein condition 9= 2 0 (with h, = xi ) now yields 

3 
6 

‘+ (bc:lj2 - (bc+Q2b2 

-‘>O 

b2’ ’ 

b2-1 + b2-1 x; 
- - 

b2 b2 (bc+1)2 a’. 

Hence (bc + 1)2 > - x,“. Substituting xi = (- c - d)/2, 8( bc + 1)2 = ( d2 - 

~~)~/2, we get 

Thus [d-(c+1)]2)4c+1, so d>(4c+1)‘/2+c+1. Squaring, rearrang- 
ing, squaring again, and canceling then yields b( bc + 1) > c2 +3 +3bc, 

whencec2~(b-3)(bc+1)~(b2-2b)c~(b-1)2c.Hencec’~2~b-1. W 

Proof of Corollary 1. (i): Let c = 2, b 2 2, and suppose that a graph G of 

type ((b + 1)-K2cb+1j)2 is feasible. Then d2 = 8(b + 1) is a perfect square, so 
b=2m-122 is odd. But then d2=42m, so m=n2 for some n>2. 

Conversely,ifc=2andb=2n2-lforanyn~2,thenk+1=bc+2=4n2, 
m(x,) =(2n2 - l)n(2n + 1)~ Z, and the Krein conditions are easily seen to 
be satisfied (since b B c). Hence a graph of type (2n’. K4n~)2 is feasible for 
every n 2 2. [When n = 1 we get the graph (2. K4)2 = Q3 -the cube, with 
r = 2, b = 1.1 

(ii): Let c = 3, b 2 2, and suppose that a graph G of type ((b + 1). Ksb+s)a 
is feasible. Then b - 1 > c112, so b a 3. Moreover d2 = 12b + 13 is a perfect 
square,sob=2m-1~3isodd,andd2=24m+1forsomem~2.Sinced 
is odd, (2d, d + c) = 2. And (d, b) =(d2, b2)li2 = (12b + 13, b2)‘i2 = 13 or 
1, according as b = 13( 13b’ + 1) for some integer b’, or not. Similarly (d, bc + 

2) =(d,3b +2) = (d2,(3b +2)2)1/2 = (4(3b +2)+5,(3b +2)2)‘/2 = 5 or 1, 
according as 3b + 2 = 5(5b” + 1) for some integer b”, or not. Since d 2 7, the 
integrality condition m(x2) = b(3b +2)(d +3)/2d E Z gives rise to just two 
possibilities: d = 13, b = 13, or d = 65, b = 351, both of which are feasible. n 
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